Difference between revisions of "Testing Area"

From MrReid.org Wiki
Jump to: navigation, search
m (Reverted edits by Yvobohinuhe (Talk); changed back to last version by Admin)
 
Line 1: Line 1:
=[http://ehyloxame.co.cc UNDER COSTRUCTION, PLEASE SEE THIS POST IN RESERVE COPY]=
 
 
Is the fricking equation support working properly?
 
Is the fricking equation support working properly?
  
<math>T_a T_b = \frac{1}{2n}\delta_{ab}I_n + \frac{1}{2}\sum_{c=1}^{n^2 -1}{(if_{abc} + d_{abc}) T_c} \,</math>
+
<math>T_a T_b = \frac{1}{2n}\delta_{ab}I_n + \frac{1}{2}\sum_{c=1}^{n^2 -1}{(if_{abc} + d_{abc}) T_c} \,</math>
  
 
HELL YEAH!
 
HELL YEAH!
  
&lt;math&gt;H^k(X, \mathbf{C}) = \bigoplus_{p+q=k} H^{p,q}(X),&lt;/math&gt;
+
<math>H^k(X, \mathbf{C}) = \bigoplus_{p+q=k} H^{p,q}(X),</math>
  
 
Navier Stokes:
 
Navier Stokes:
* There exists a constant &lt;math&gt;E\in (0,\infty)&lt;/math&gt; such that &lt;math&gt;\int_{\mathbb{T}^3} \vert \mathbf{v}(x,t)\vert dx &lt;E&lt;/math&gt; for all &lt;math&gt;t\ge 0\,.&lt;/math&gt;
+
* There exists a constant <math>E\in (0,\infty)</math> such that <math>\int_{\mathbb{T}^3} \vert \mathbf{v}(x,t)\vert dx <E</math> for all <math>t\ge 0\,.</math>
  
 
[http://www.andy-roberts.net/misc/latex/latextutorial9.html Equation Tutorial]
 
[http://www.andy-roberts.net/misc/latex/latextutorial9.html Equation Tutorial]

Latest revision as of 06:22, 24 November 2010

Is the fricking equation support working properly?

<math>T_a T_b = \frac{1}{2n}\delta_{ab}I_n + \frac{1}{2}\sum_{c=1}^{n^2 -1}{(if_{abc} + d_{abc}) T_c} \,</math>

HELL YEAH!

<math>H^k(X, \mathbf{C}) = \bigoplus_{p+q=k} H^{p,q}(X),</math>

Navier Stokes:

  • There exists a constant <math>E\in (0,\infty)</math> such that <math>\int_{\mathbb{T}^3} \vert \mathbf{v}(x,t)\vert dx <E</math> for all <math>t\ge 0\,.</math>

Equation Tutorial