Difference between revisions of "Testing Area"

From MrReid.org Wiki
Jump to: navigation, search
m (Reverted edits by Yvobohinuhe (Talk); changed back to last version by Admin)
 
(2 intermediate revisions by 2 users not shown)
Line 9: Line 9:
 
Navier Stokes:
 
Navier Stokes:
 
* There exists a constant <math>E\in (0,\infty)</math> such that <math>\int_{\mathbb{T}^3} \vert \mathbf{v}(x,t)\vert dx <E</math> for all <math>t\ge 0\,.</math>
 
* There exists a constant <math>E\in (0,\infty)</math> such that <math>\int_{\mathbb{T}^3} \vert \mathbf{v}(x,t)\vert dx <E</math> for all <math>t\ge 0\,.</math>
 +
 +
[http://www.andy-roberts.net/misc/latex/latextutorial9.html Equation Tutorial]

Latest revision as of 06:22, 24 November 2010

Is the fricking equation support working properly?

<math>T_a T_b = \frac{1}{2n}\delta_{ab}I_n + \frac{1}{2}\sum_{c=1}^{n^2 -1}{(if_{abc} + d_{abc}) T_c} \,</math>

HELL YEAH!

<math>H^k(X, \mathbf{C}) = \bigoplus_{p+q=k} H^{p,q}(X),</math>

Navier Stokes:

  • There exists a constant <math>E\in (0,\infty)</math> such that <math>\int_{\mathbb{T}^3} \vert \mathbf{v}(x,t)\vert dx <E</math> for all <math>t\ge 0\,.</math>

Equation Tutorial